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ABSTRACT
We study the asymptotic theory of nonparametric estimation of the term structure’s
volatility for a class of one factor Heath-Jarrow-Morton term structure models driven
by fractional Levy processes. This class of models is important, as it captures, as a
special case, all term structure models where the short term interest rate represents
a time-homogeneous univariate fractional diffusion with jumps in the equivalent risk
neutral economy.
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1. Introduction and Preliminaries

Heath, Jarrow and Morton [19] presented a general framework for modeling term
structure of interest rates which nests most other models as special cases. In their
framework, the dynamics of the term structure and the prices of derivative instruments
depend upon the initial term structure and the forward rate volatility functions. So
it is desirable to estimate the forward rate volatilities. Nonparametric estimation of
forward rate volatility of standard HJM model driven by Brownian motion was studied
by Jeffrey, Linton and Nguyen [22]. Bishwal [6] studied nonparametric estimation in
HJM model driven by fractional Brownian motion. Bishwal [9] studied parameter
estimation in stochastic volatility models with both Gaussian and non-Gaussian noises.

The insufficiency of diffusion models to explain some empirical properties of term
structure has led to the development of jump- diffusion model based on Levy processes.
Eberlein and Raible [14] introduced term structure model driven by Levy process by

CONTACT Jaya P. N. Bishwal. Email: J.Bishwal@charlotte.edu

Apple air
Asian European Journal of  Probability and Statistics 

Apple air
Vol. 1, No-2, (2024), pp. 89-106

Apple air
© Permanent Blue, India 



Asian European Journal of Probability and Statistics Jaya P. N. Bishwal

extending the Heath-Jarrow-Morton model which ia a particular case of the model
studied by Bjork et al. [11]. Kuchler and Naumann [23] showed that the processes
are Markovian if and only if the volatility factorises. We study nonparametric esti-
mation of forward rate volatility driven by fractional Levy processes and study the
asymptotic behavior of the estimator for high-frequency data. Our results hold for
compound Poisson processes, bilateral gamma processes and in particular, variance
gamma process.

It is known that the short rate in Markovian if and only if the volatility structure
has either the Vasicek or the Ho-Lee form. Because of the no arbitrage restriction, in
the risk neutral world, the drift function of the forward curve evolution is a function
of the volatility structure. For yield curve evolution, this no arbitrage restriction also
imposes that the drift function is a function of the yield volatility. Together with the
knowledge of the market price of risk, the dynamics of the yield curve under the real
world measure can be recovered. So for pricing based on HJM model, we only need to
estimate the volatility structure.

In the original HJM models, a finite source of Brownian motions serve as the source
of randomness in the economy and drive the dynamics of the whole yield curves.
Empirical data shows that the yield curves have jumps.

Fractional Levy Process (FLP) is defined as

MH,t =
1

Γ(H + 1
2)

∫
R
[(t− s)

H−1/2
+ − (−s)

H−1/2
+ ]dLs, t ∈ R, 0 < H < 1,

where {Lt, t ∈ R} is a Levy process on R with mean zero with finite variance: E(L1) =
0, E(L2

1) < ∞ and the covariance of the process is given by

cov(MH,t,MH,s) =
E(L2

1)

2Γ(2H + 1) sin(πH)
[|t|2H + |s|2H − |t− s|2H ].

Now we concentrate on the fundamental semimartingale behind the model. Define

κH := 2HΓ(3/2−H)Γ(H + 1/2), kH(t, s) := κ−1
H (s(t− s))

1

2
−H ,

ηH :=
2HΓ(3− 2H)Γ(H + 1

2)

Γ(3/2−H)
, vt ≡ vHt := η−1

H t2−2H , MH
t :=

∫ t

0
kH(t, s)dMH

s .

Recall that since a Radon-Nikodym derivative process is always a martingale, in order
to use Girsanov theorem for Brownian motion, a central problem for FLP is how to
construct an appropriate martingale which generates the same filtration, up to sets of
measure zero, called the fundamental semimartingale.

The natural filtration of the martingale MH coincides with the natural filtration of
the FLP MH since MH

t :=
∫ t
0 KH(t, s)dMH

s holds for H ∈ (1/2, 1) where

KH(t, s) := H(2H − 1)

∫ t

s
rH− 1

2 (r − s)H− 3

2dr, 0 ≤ s ≤ t.

Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis on which is defined the Ornstein-
Uhlenbeck process {Xt} satisfying the Itô stochastic differential equation

dXt = θXtdt+ dMH,t, t ≥ 0,
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where {MH
t } is a fractional Levy process with H > 1/2 with the filtration {Ft}t≥0 and

θ < 0 is the unknown parameter to be estimated on the basis of continuous observation
of the process {Xt} on the time interval [0, T ]. For the standard Ornstein-Uhlenbeck
process, minimum contrast estimation is studied in Bishwal [4] and Bayes estimation
is studied in Bishwal [7].

Observe that Xt =
∫ t
−∞ eθ(t−s)dMH,s, t ≥ 0. Define Qt :=

d
dvt

∫ t
0 kH(t, s)Xsds and

Zt :=
∫ t
0 kH(t, s)dXs. Then Qt = ηH

2(2−2H)

{
t2H−1Zt +

∫ t
0 s

2H−1dZs

}
. We have the

equivalent semimartingale representation: (i) Z is the fundamental semimartingale
associated with the process X, (ii) Z is a (Ft) -semimartingale with the decomposition

Zt = θ
∫ t
0 Qsdvs + MH

t , (iii) X admits the representation Xt =
∫ t
0 KH(t, s)dZs, (iv)

The natural filtration (Zt) of Z and (Xt) of X coincide.
We concentrate on our observations (data set) now. Note that for equally spaced

data (homoscedastic case) vtk − vtk−1
= η−1

H

(
T
n

)2−2H
[k2−2H − (k − 1)2−2H ], k =

1, 2, · · · , n. For H = 0.5, vtk − vtk−1
= η−1

H

(
T
n

)2−2H
[k2−2H − (k − 1)2−2H ] = T

n , k =
1, 2, . . . , n.

We have

Qt =
d

dvt

∫ t

0
kH(t, s)Xsds = κ−1

H

d

dvt

∫ t

0
s1/2−H(t− s)1/2−HXsds

= κ−1
H ηHt2H−1 d

dt

∫ t

0
s1/2−H(t− s)1/2−HXsds

= κ−1
H ηHt2H−1

∫ t

0

d

dt
s1/2−H(t− s)1/2−HXsds

= κ−1
H ηHt2H−1

∫ t

0
s1/2−H(t− s)−1/2−HXsds.

The process Qt depends continuously on Xt and therefore, the discrete observations
of X does not allow one to obtain the discrete observations of Q. The process Q can
be approximated by

Q̃(n) = κ−1
H ηHn2H−1

n−1∑
j=0

j1/2−H(n− j)−1/2−HXj .

It is easy to show that Q̃n → Qn almost surely as n → ∞, see Tudor and Viens [28].
Define a new partition 0 ≤ r1 < r2 < r3 < · · · < rmk

= tk, k = 1, 2, · · · , n. Define

Q̃tk = κ−1
H ηHt2H−1

k

mk∑
j=1

r
1/2−H
j (rmk

− rj)
−1/2−HXrj (rj − rj−1), k = 1, 2, · · · , n.

It is easy to show that Q̃tk → Qt a.s. as mk → ∞ for each k = 1, 2, · · · , n. We use
this approximation of observation in the calculation of our estimators. The nonlinear
fractional SDE driven by fractional Levy process is state space transform of the
fractional Ornstein-Uhlenbeck process, see Buchmann and Kluppelberg [12] for fBm
driven SDE models.
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Local Time for Fractional Levy Process:

Recently Ichiba et al. [20, 21] studied generalized fractional Brownian motion
(GFBM). A generalized fractional Brownian motion is a Gaussian self-similar pro-
cess whose increments are not necessarily stationary. It appears in the scaling limit of
a shot-noise process with a power law shape function and non-stationary noises with
a power law variance function. They studied semimartingale properties of the mixed
process made up of an independent Brownian motion and a GFBM for the persistent
Hurst parameter. It would be interesting to extend the current paper to GFBM noise.

Maximum quasi-likelihood estimation of unknown parameters in the unobserved
volatility process in fractional Levy stochastic volatility model having fractional Levy
process as the driving term which include jumps and long memory, was studied in
Bishwal [5]. Maximum quasi-likelihood estimation in SPDE driven by fractional Levy
processes was studied in Bishwal [8]. Bishwal [10] studied interest rate derivatives for
the fractional Cox-Ingersoll-Ross model.

A fBm has a local time process l(x, t), x ∈ R, t ≥ 0 that is jointly continuous
in x and t. The self similarity of the fBm implies the scaling property of the
local time process. limt→∞ l(x, t) = ∞ for all x ∈ R. The process l(x, t) has mo-
ments of all orders finite and uniformly bounded in all real x and all t in a compact set.

Local Time for Levy Process:

For symmetric α stable Levy process X with α ∈ (1, 2], Salminen and Yor showed
which powers of local times are semimartingales:

|Xt − x|α−1 = |x|α−1 +Nx
t + c1L

x
t .

where N is a martingale with

⟨N⟩t = c2

∫ t

0

ds

|Xs − x|2−α
.

For α < γ < α, |Xt − x|γ is a submartingale. For 0 < γ < α − 1, |Xt − x|γ is not a
semimartingale but for (α − 1)/2 < γ < α − 1, |Xt − x|γ is a Dirichlet process with
the canonical decomposition

|Xt − x|γ = |x|γ +N
(γ)
t +A

(γ)
t .

where N
(γ)
t is a martingale and A

(γ)
t has zero quadratic variation.

Itô formula for semimartingales:

f(Xt) = f(X0)+

∫ t

0
f ′(Xs−)dXs+

σ2

2
f ′′(X)ds+

∑
0<s≤t

(f(Xs)−f(Xs−)−f ′′(Xs−)∆Xs).
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Occupation time formula: ∫ t

0
f(Xs)ds =

∫ ∞

−∞
f(x)Lx

t dx.

for every Borel function f on R.

Occupation measure: Thus Lx
t is Radon-Nikodym derivative of the occupation measure

of X with respect to Lebesgue measure on R.∫ t

0
f(Xs)d⟨Xc⟩ =

∫ ∞

−∞
f(x)λx

t dx.

d⟨Xc⟩ = ds, i.e., Xc is a Brownian motion, then L and λ coincide.

Tanaka Formula:

v(Xt − x) = v(x) +Nx
t + Lx

t .

For standard Brownian motion, v(x) = |x|.

Estimation of the Diffusion Coefficient

Suppose the process X satisfies

dXt = a(Xt)dt+ σ(Xt)dWt

where a is a bounded function, twice continuously differentiable, with bounded deriva-
tives, σ is an unknown function with three continuous and bounded derivatives such
that there exists two constants k and K with 0 < k ≤ σ(x) ≤ K. Define

s(x) =

∫ x

0
σ−1(u)du

and g = s−1. The process Yt = s(Xt) satisfies

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0

where b = ( aσ ) ◦ g −
1
2σ

′ ◦ g which is a bounded function of class C2.
Local time of Y in x during [0, t] is defined as

Lt(x) = lim
δ→0

1

δ

∫ t

0
I{|Ys−x|<δ}ds.

and its discrete approximation is defined as

Ln,t(x) =
1

2nh

n∑
i=1

I{|Yti−1
−x|<δ}, Ln,T (x) =

n∑
i=1

Ix,h(y) =

n∑
i=1

I( |y−x|
h

<1).
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Let h be the spatial discretization step, the bandwidth. Florens-Zmirou [16] used
discrete approximation of the local time to estimate the diffusion coefficient:

σ̂2
n,T (x) =

∑n
i=1 Ix,h(Yti−1

)(∆Yti)
2∑n

i=1 Ix,h(Yti−1
)∆ti

.

The estimator has the following properties:

Theorem 1.1
1) As nh4 → 0 as n → ∞, Ln,T (x) →L2 L(x).
2) As (nh2)−1 log n → 0 as n → ∞, Ln,T (x) →a.s. L(x).
3) Thus σ̂2

n,T (x) is a consistent estimator of σ2(x).

4)

√
nh

(
σ̂2
n,T (x)

σ2(x)
− 1

)
→d L(x)−1/2Z

where Z is standard normal independent of the local time L(x).
5) With random norming as nh4 → 0 as n → ∞,

√
Nn

x

(
σ̂2
n,T (x)

σ2(x)
− 1

)
→d

√
2Z where Nn

x = nLn
x.

Remarks: 1) nh4 → 0 condition can be relaxed by using Itô formula.
2) (nh2)−1 log n → 0 condition can be relaxed by using Itô formula.

Monte Carlo Estimate of Local Time:

Lm,n,t(x) =
1

2mnh

n∑
i=1

m∑
j=1

I{|Yti−1,j−x|<δ}.

Theorem 1.2 Lm,n,T (x) →P L(x) as nh4 → 0 as n → ∞ and m → ∞.

Proof: First observe that by the LLN, Lm,n,t(x) →P Ln,t(x) as m → ∞.
The expansion of the transition density pt in y is given by

pt(x, y) =
1√
2πt

1

σ(y)
exp

(
−(s(y)− s(x))2

2t

)
Ut(s(x), s(y))

with

Ut(x, y) := Ht(x, y) exp[A(y)−A(x)],

Ht(x, y) := E

[
exp

(
−t

∫ 1

0
f(x+ z(x− y) +

√
tBz)dz

)]
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with B is a Brownian bridge, A an integral of b and f = 1
2(b

2 + b′).
Following Friedman (1975), (see Nakamura and Zheng [24], and Gobet [18])

pt(x, y) ≤
C√
t
exp

(
−(y − x)2

2t

)
,

∂pt(x, y)

∂x
≤ C|x− y|

t3/2
exp

(
−(y − x)2

2t

)
.

The MC estimate of this expansion of the transition density is given by

pm,t(x, y) :=
1√
2πt

1

σ(y)
exp

(
−(s(y)− s(x))2

2t

)
Um,t(s(x), s(y))

with

Um,t(x, y) := Hm,t(x, y) exp[A(y)−A(x)],

Hm,t(x, y) :=
1

m

m∑
j=1

[
exp

(
−t

∫ 1

0
fj(x+ z(x− y) +

√
tBz)dz

)]

where B is a Brownian bridge, A an integral of b and fj =
1
2(b

2
j +b′j), bj = b(Xt,j) and

Xt,j is the j-th simulated path of Xt, j = 1, 2, . . . ,m by, for example, exact simulation
method, see Beskos and Roberts [3].

For simplicity take x = 0 and t = 1. We have

Lm,n,t(x) :=
1

m

n∑
i=1

m∑
j=1

I{|Yti−1,j−x|<δ}.

Let

ξi,m :=
1

m

1

2nh

m∑
j=1

I{|Yti−1,j |<h}, ηi,m := L(i+1)/n,m − Li/n,m.

We have

∑
i ̸=k

Ex0(ξi,mξk,m) = 2
∑
i<k

1

4n2h2

m∑
j=1

∫ h

−h

∫ h

−h
pi/n,m(x0, x)p(k−i)/n,m(x, y)dxdy.

Let

R1
m,n :=

∣∣∣∣∣∣
∑
i ̸=k

Ex0(ξi,mξk,m)− 2

n2

∑
i<k

m∑
j=1

pi/n,m(x0, 0)p(k−i)/n,m(0, 0)

∣∣∣∣∣∣ .
It can be shown that

R1
m,n = O(

√
nh2) +O(h), Ex0(ξi,m)2 ≤ 2h

4n2h2
p∗i/n,m(x0, h),
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n∑
i=1

Ex0 |ξi,mηi,m| = O(
1

n3/4h1/2
).

Let

R2
m,n :=

∣∣∣∣∣∣
∑
i<j

Ex0(ξi,mηj,m)− 1

n

∑
i<j

m∑
j=1

∫ (j+1)/n

j/n
pi/n,m(x0, 0)ps−(k−i)/n,m(0, 0)ds

∣∣∣∣∣∣ .
It can be shown that

R2
m,n = O(

√
nh2) +O(h),

n∑
i=1

Ex0(ηi,m)2 = O(
1

nh
).

Let

In = Ex0 [
∑
i

I|Yti−1,j |<h[n(Y(i+1)/n − Yi/n)
2 − σ2(0)]] =:

∑
i,k

Im,n(i, k)

where

Im,n(i, k) =

∫ h

−h

∫ h

−h
pi/n,m(x0, x)dx

[∫ ∞

−∞
p1/n,m(x, y)[n(y − x)2 − σ(0)2]dy

×
∫ h

−h

∫ h

−h
p(k−i−1)/n,m(y, z)dz

∫ ∞

−∞
p1/n,m(z, v)[n(v − z)2 − σ(0)2]dv

]
Let

Im,n(α, i, k) =

∫ h

−h

∫ h

−h
pi/n,m(x0, x)dx

[∫ nα

−nα

p1/n,m(x, y)[n(y − x)2 − σ(0)2]dy

×
∫ h

−h

∫ h

−h
p(k−i−1)/n,m(y, z)dz

∫ nα

−nα

p1/n,m(z, v)[n(v − z)2 − σ(0)2]dv

]
.

We have

|Im,n(i, k)− Im,n(α, i, k)| = O(exp(−Cn2α)), exp[A(x+u/
√
n)−A(x)] ≤ C expC|u|,

expH1/n(x+ u/
√
n) = O(1), |n(g(x+ u/

√
n)− g(x))2 − g′2(0)| ≤ C(u2 + 1).

Consider the martingale

Mn
t =

[nt]−1∑
i=0

√
n

2h
I|Yti−1,j−x|<h[n(Y(i+1)/n − Yi/n)

2 − σ2(x)/n].

96



Asian European Journal of Probability and Statistics Jaya P. N. Bishwal

It can be shown that Mn
t → Mt with increasing process ⟨M⟩t = 2σ4(x)Lt(x). Then we

can writeMt = B2σ4(x)Lt(x) where Bt is a Brownian motion. If τt := {u : 2σ4(x)Lt(x) >
t} then Bt = Mτt . By Knight’s theorem Bt and Wt are independent Brownian motions.
Note that local time at a stopping time (Knight’s Theorem) has a connection to Bessel
process.

Let the martingale difference sequence be defined as

mi+1 :=

√
n

2h
I|Yti−1,j−x|<h[n(Y(i+1)/n − Yi/n)

2 − σ2(x)/n]

wi+1 := W(i+1)/n −Wi/n, Mn
t =

[nt]−1∑
i=0

mi+1, Wn
t =

[nt]−1∑
i=0

wi+1.

Using Cauchy-Schwartz inequality, Burkholder-Davis-Gundy inequality, Itô’s formula
as nh3 → 0 as n → ∞,

[nt]−1∑
i=0

Ei,nmi+1 →P 0,

[nt]−1∑
i=0

Ei,nm2
i+1 →P 2σ4(x)Lt(x),

[nt]−1∑
i=0

Ei,nm3
i+1 →P 0,

[nt]−1∑
i=0

Ei,nwi+1mi+1 →P 0.

The process (Y(i+1)/n,s − Yi/n,s)0≤s≤1/n is a semimartingale for which Burkholder-
Davis-Gundy inequality can be applied. By Itô’s formula

Mn
t =

[nt]−1∑
i=0

√
n

2h
I{|Yti−1,j−x|<h}[n(Y(i+1)/n − Yi/n)

2 − σ2(x)/n]

=

[nt]−1∑
i=0

√
n

2h
I{|Yti−1,j−x|<h}

[∫ (i+1)/n

i/n
2(Y(i+1)/n − Yi/n)b(Yu)du

+

∫ (i+1)/n

i/n
(σ2(Yu)− σ2(x))du

]
.

Thus

|E(Mn
t )| = O(1)[h1/2 + h3/2n1/2]Ln,t(x).

This converges to zero in probability as nh3 → 0 since Ln,t(x) → Lt(x).

2. Term Structure Dynamics and Model Specification

Modeling the dynamics of interest rates with jumps is of recent interest since they
provide a better characterization of randomness in the financial markets than diffusion
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models. Levy driven HJM framework introduced in Eberlein and Raible [14] represents
the term-structure in terms of forward rates and for a single source of uncertainty in
the bond market, introduced by the Levy process Lt, the uncertain evolution of each
forward rate with fixed maturity date T satisfies the SDE

df(t, T ) = α(t, T )dt+ σ(t, T )dMH
t

where

α(t, T ) = r(t)− θ(σ(t, T ))

and r(t) is the short rate, θ(u) is the logarithmic moment generating function of MH
1 .

Here {MH
t } is a fractional Levy process with Levy measure F satisfying∫

|x|>1
exp(ux)F (dx) < ∞

for all u from an open interval I = (u0, u1) including zero.
Let P (t, T ) be the price of a one dollar face value, default free, zero coupon bond at

time t that will mature at time T . The instantaneous forward rate at time t for date
T denoted by f(t, T ) is defined by

f(t, T ) := −∂ lnP (t, T )

∂T

and the short rate is defined as

r(t) := f(t, t).

We will assume that −∂ lnP (t,T )
∂T exists for all T .

The bond price satisfies the SDE

dP (t, T ) = P (t, T )[r(t)dt+ σ(t, T )dMH
t ]

which gives

P (t, T ) = P (0, T )β(t)
exp

∫ t
0 σ(s, T )dM

H
s

E
[
exp

∫ t
0 σ(s, T )dM

H
s

]
where

β(t) =

∫ t

0
r(s)ds

is the value of the numeraire at time t and P (T, T ) = 1.
The forward rate satisfies the equation:

f(t, T ) = f(0, T ) +

∫ t

0
θ′(σ(s, T ))σ2(s, T )ds−

∫ t

0
σ2(s, T )dM

H
s , 0 ≤ t ≤ T
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where θ(v) = logE[exp(MH
1 )].

θ(z) = bz +
c

2
z2 +

∫
R
(ezx − 1− zx)F (dx).

f(0, T ) = −∂/(∂T ) logP (0, T ), θ′(u) :=
d

du
θ(u), σ2(t, T ) := ∂/(∂T )σ(t, T ).

σ2(t, T ) is called the volatility function.
The short rate r(t) = f(t, t) is the instantaneously maturing forward rate at time t:

r(t) = f(0, t) +

∫ t

0
θ′(σ(s, t))σ2(s, t)ds−

∫ t

0
σ2(s, t)dM

H
s .

The short rate process is Markovian if and only if the volatility function factorizes
and H = 0.5:

σ2(t, T ) = τ(t)ζ(T )

for some functions τ(·) and ζ(·), (see Eberlein and Raible [14] and Kuchler and Nau-
mann [23]).

We assume that

|E exp(iuMH
1 )| ≤ C exp(−γ|u|η), u ∈ R

for some positive constants C, γ, η.
This condition is satisfied for example for Wiener processes, Normal Inverse Gaus-

sian (NIG) Levy processes, Stable processes and Hyperbolic Levy processes. On the
other hand, it does not hold for compound Poisson process, gamma processes and
finite sums of independent examples of them.

Let σ : [0, T ] → R be a deterministic, continuously differentiable function. Then for
almost all ω ∈ Ω, ∫ t

0
σ(s)dMH

s = σ(t)MH
t −

∫ t

0
σ′(s)ds ∀t ∈ [0, T ].

If L is the standard Wiener process, we have θ′(u) = u and the model satisfies the
classical HJM condition on the drift coefficient of the forward rate process.

If f is a continuously differentiable function on [0, t] having values in the interval
(u0, u1) only, then

E exp

[∫ t

0
f(s)dMH

s

]
= exp

[∫ t

0
θ(f(s))ds

]
.

Finally,

P (t, T ) = E

(
exp

(
−
∫ T

t
rsds

)
| At

)
.
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When the short rate is a Markov process the bond price can be evaluated explicitly.
The discounted processes P̃ (t, T ) = β(t)−1P (t, T ) are martingales. The short rate

satisfies the SDE

dr(t) = [f2(0, t)+θ′(σ(0, t))σ2(0, t)]dt+
ζ ′(t)

ζ(t)
[θ(σ(0, t))+f(0, t)−r(t)]dt−σ2(t, t)dM

H
t .

Our aim in this paper is to estimate the term structure’s volatility which is given by
the forward rate volatility σ(t, T ). We observe the whole term structure in discrete
points in time. Typically estimation of the forward rate curve is more difficult than
yield curve. The yield at time t with maturity date T , denoted by y(t, T ) is fined by

y(t, T ) = − 1

T − t
lnP (t, T ).

Thus forward rate and yield curve are related by

f(t, T ) = y(t, T ) + (T − t)
∂

∂T
y(t, T ).

We will estimate the term structure yield volatility instead of the forward volatility.
Yield curve satisfies the SDE

dy(t, T ) = m(t, T ) + η(t, T )dMH
t

where

η(t, T ) =
1

T − t

∫ T

0
σ(t, s)ds, m(t, T ) =

y(t, T )− r(t)

T − t
+ r(t)η(t, T ) +

1

2
η2(t, T ).

Following are the fractional Levy versions of most popular short rate models.

1. Fractional Levy Vasicek Model:

dVt = (b+ βrt)dt+ σ
√
rtdM

H
t

2. Fractional Levy Cox-Ingersoll-Ross (CIR) Model:

dVt = (b+ βrt)dt+ σ
√
rtdM

H
t

3. Fractional Levy Dothan Model:

dVt = (b+ βrt)dt+ σrtdM
H
t

4. Fractional Levy Black-Derman-Toy Model:

dVt = β(t)rtdt+ σ(t)rtdM
H
t

5. Fractional Levy Black-Karasinksi Model: lt = log rt.

dVt = (b(t) + β(t)lt)dt+ σ(t)dMH
t
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6. Fractional Levy Ho-Lee Model:

dVt = b(t)dt+ σdMH
t

7. Fractional Levy Hull-White (Extended Fractional Levy Vasicek) Model:

dVt = (b(t) + β(t)rt)dt+ σtdM
H
t

8. Fractional Levy Hull-White (Extended CIR) Model:

dVt = (b+ βrt)dt+ σt
√
rtdM

H
t .

3. Yield Curve Volatility Structure Estimation

Consider the Markov diffusion process

dYt = µ(Yt)dt+ σ(Yt)dWt, t ∈ [0, T ].

Bandi and Phillips [2] proposed the following two kernel estimators of µ and σ:

µ̂n,T (x) =

∑n
i=1Kx,h(Yti−1

)∆Yti∑n
i=1Kx,h(Yti−1

)∆ti
, σ̂2

n,T (x) =

∑n
i=1Kx,h(Yti−1

)(∆Yti)
2∑n

i=1Kx,h(Yti−1
)∆ti

where the kernel Kx,h(y) := K
(y−x

h

)
. See Bandi and Nguyen [1] for extension to jump

diffusion models.
We use the kernel method to estimate the yield curve volatility η(t, T ) in the non-

Markov non-semimartingale model. The kernel estimator is shown to be consistent
and mixed normally distributed. We also estimate the rate of convergence. Our ob-
servations are the short term interest rates r(ti), i = 1, 2, · · · , n and the yield tran-
sitions ∆ỹ(ti, τ) := ỹ(ti+1, τ) − ỹ(ti, τ), i = 1, 2, · · · , n. For simplicity it is assumed
that all time intervals are equally spaced, that is, ∆t := ti+1 − ti for all i. Denote
η̃(t, τ) = η(r(t), τ).

m̃(t, τ) = lim
∆t→0

(
1

∆t
E[(ỹ(t+∆t, τ))− ỹ(t, τ))|Ft]

)
.

It is apparent that

η̃(t, τ)2 = lim
∆t→0

(
1

∆t
E[(ỹ(t+∆t, τ))− ỹ(t, τ))2|Ft]

)
.

The yield volatility structure is the standard deviation of the yield curve transitions.
Since we restrict volatility structures of the form η̃(t, τ) = η(r(t), τ), it is enough to
determine the volatility structure at time t. Consequently the following approximation
for the yield volatility holds:

η̃(t, τ)2 ≃ lim
∆t→0

(
1

∆t
E[(ỹ(t+∆t, τ))− ỹ(t, τ))2|rt]

)
.
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Replacing the expectation on the right hand side by the Nadaraya-Watson kernel
smoothing estimator, the yield volatility estimator is given by

η̂(t, τ)2 =
1

∆t

∑n−1
i=1

1
hK(

r−rti
h )(∆ỹ(ti, τ))

2∑n−1
i=1

1
hK(

r−rti
h )

where K(·) is a symmetric kernel function that integrates to one and h is a bandwidth
parameter that decreases to zero as sample size n → ∞ that controls the amount of
smoothing.

Replacing the expectation on the right hand side by the Nadaraya-Watson kernel
smoothing estimator, the yield mean estimator is given by

m̂(t, τ) =
1

∆t

∑n−1
i=1

1
hK(

r−rti
h )(∆ỹ(ti, τ))∑n−1

i=1
1
hK(

r−rti
h )

.

We will us the following result to prove consistency.

Lemma 3.1 (Newey and Powell [25]) Suppose that i) there exists some deterministic
function Q(γ) with a unique minimum at γ0 lying in the metric space Γ; ii) QnJ(γ)
and Q(γ) are continuous; iii) Γ is compact and iv) supγ∈Γ |QnJ(γ) − Q(γ)| = oP (1).

Define γ̂ = argminγ∈ΓQnJ(γ). Then γ̂ →P γ0.

Theorem 3.1 The yield volatility structure estimator is strongly consistent, i.e.,

η̂(t, τ)2 − η(t, τ)2 → 0 a.s. as n → ∞,∆t → 0, hn,T → 0.

Proof. We verify the conditions of Lemma 3.1. Observe that

η̂(t, τ)2 − η(t, τ)2 =
1

∆t

∑n−1
i=1

1
hK(

r−rti
h )(∆ỹ(ti, τ))

2∑n−1
i=1

1
hK(

r−rti
h )

− lim
∆t→0

(
1

∆t
E[(ỹ(t+∆t, τ))− ỹ(t, τ))2|rt]

)
.

Using Taylor expansion, we have

η̂(t, τ)2 − η(t, τ)2 =

∫
Ĥ1(r, τ, s)η̂(s, τ)

2ds∫
Ĥ2(r, τ, s)η̂(s, τ)2ds

−
∫
Ĥ1(r, τ, s)η(s, τ)

2ds∫
Ĥ2(r, τ, s)η(s, τ)2ds

where

Ĥ1(r, τ, s) =

n−1∑
i=1

1

h
K(

r − rti
h

)(∆ỹ(ti, τ))
2, Ĥ2(r, τ, s) =

n−1∑
i=1

1

h
K(

r − rti
h

)∆t.
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From Florens-Zmirou [16], we have

∆n

n−1∑
i=1

1

h
K(

r − rti
h

) →P l̄r(tn, r) as n∆4
n → 0.

Assumptions
(A1) The drift and the diffusion are locally bounded

|α(ti)− α(tj)|+ |η(r(ti))− η(r(tj))| ≤ C|Z(ti)− Z(tj)|

and there exists some 0 < ν < 1
2 such that∣∣∣∣ ∆ν

n

L̄(t, a)

∫ tn

0

1

h
K(

r − rs
h

)α(s)ds

∣∣∣∣ = O(1)

where Zt is the Dirichlet process

dZt = α(t)dt+ η(r(t))dMH
t = (ζ(r(t)) + ϕ(t))dt+ η(r(t))dMH

t

and rt is the Dirichlet process of the form

drt = µ(t)dt+ σ(r(t))dMH
t .

(A2) l̄(t, a) → ∞ as t → ∞.

Theorem 3.2 The asymptotic distribution of the yield volatility estimator is
mixed normal, i.e,√

hl̄(tn, r)

∆t
(η̂(t, τ)2 − η(t, τ)2) →D MN

(
0, 4

(∫ ∞

−∞
K(u)2du

)
η(r, τ)4

)
as n → ∞ where l̄(tn, r) is the local time at the point r of the process r(t) which is
a measure of the absolute amount of time that the short term interest rate process
spends in the vicinity of the point r over the time interval [0, tn]. An estimate of the
asymptotic variance of η̂(t, τ)2 can be obtained by replacing η(τ, τ)4 with η̂(τ, τ)4 and
l̄(tn, r) can be estimated by ∆t

∑n
i=1Kh(r − r(ti)).

Proof. Consider the Dirichlet process

dZt = α(t)dt+ η((r(t))dMH
t

= [ζ(r(t)) + ϕ(t)]dt+ η(r(t))dMH
t

where r(t) is also a Dirichlet process of the form

dr(t) = µ(t)dt+ σ(r(t))dMH
t .
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Note that

η̂(r)2 =
1

∆t

∑n−1
i=1

1
hK(

r−rti
h )(∆Z(ti))

2∑n−1
i=1

1
hK(

r−rti
h )

, ζ̂(r)2 =
1

∆t

∑n−1
i=1

1
hK(

r−rti
h )(∆Z(ti)− ϕ(ti)∆t)∑n−1
i=1

1
hK(

r−rti
h )

.

The local time of the Dirichlet process r at a point a over the time interval [0, t] the
amount of time spent by the process near a and is defined as

l(t, a) = lim
ϵ→0

1

2ϵ

∫ t

0
I{|rs−a|<ϵ}σ

2(rs)ds.

The discrete approximation of l(t, a) is

ln(t, a) =
1

2n∆n

n−1∑
i=1

I{|rti−a|<∆n}σ
2(rti)(ti+1 − ti).

Occupation Time Formula: For every Borel f , we have∫ t

0
f(rs)d⟨r, r⟩ =

∫ ∞

−∞
f(a)l(t, a)da.

The kernel K has compact support and is symmetric about 0 and is continuously
differentiable.

Remark As n∆3
n → 0, using random norming (discrete local time), one can obtain

asymptotic normality as in Florens-Zmirou [16].

4. Stochastic Volatility Model

Let the Musiela parametrization of forward rates be given by g(t, x) = f(t, t + x).
Here x denotes the time to maturity as opposed to T which is time of maturity. The
stochastic volatility model is the pair (g(t, x), vt) satisfying the infinite dimensional
SDE

dg(t, x) =
{

∂
∂xg(t, x) + σ(g(t, x)), vt, x)

∫ x
0 σ(g(t, s)), vs, s)ds

}
dt+ σ(g(t, x)), vt, x)dLt,

dvt = a(vt)dt+ b(vt)dM
H
t , t ≥ 0

where (MH
t , t ≥ 0) is a fractional Levy process.

The forward rate volatility is assumed to be an arbitrary functional of the entire
forward curve as well as the variable vt. Carmona and Tehranchi [13] studied infi-
nite dimensional approach to HJM model. We suggest to use the branching particle
algorithm to solve this nonlinear volatility estimation problem.
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